In order to study the convergence of $(1+\frac{1}{n})^n$ to $e$,consider the sequences
\begin{equation} a_n=(1+\frac{1}{n})^n~~~\mbox{and}~~~b_n=(1+\frac{1}{n})^{n+1} \end{equation}show that \begin{equation} a_1<a_{2}<\cdots<e<\cdots<b_3<b_2<b_1 \end{equation}and that $b_n-a_n\leq \frac{4}{n}$.Proof:According to,$a_1<a_2<\cdots<e$.Then we prove that
\begin{equation}
(1+\frac{1}{n})^{n+1}>(1+\frac{1}{n+1})^{n+2}\end{equation}This is simple,because\begin{equation} \label{eq:ksdas} (1+\frac{1}{n+1})^{n+2}=(1+\frac{1}{n+1})^{n+1}(1+\frac{1}{n+1})<(1+\frac{1}{n})^n(1+\frac{1}{n})=(1+\frac{1}{n})^{n+1}\end{equation}Then we prove that
\begin{equation} (1+\frac{1}{n})^{n+1}-(1+\frac{1}{n})^n\leq \frac{4}{n}\end{equation}We only need to prove that
\begin{equation} (1+\frac{1}{n})^n\leq 4\end{equation}This is simple,because
\begin{equation} e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots<3\end{equation}